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The Heaviside-Feynman expression for the fields of an 
accelerated dipole 

J. J. MOKAGHAK 
Churchill College, University of Cambridge, Cambridge 
MS. receiaed 17th August 1967, in reaised fo rm 16th October 1967 

Abstract. The fields due to an accelerated dipole are calculated using straightforward 
electromagnetic theory. I t  is shown that the potentials and fields may be written so 
that the static field, its first correction and the radiation field are separated. The  
expression for the fields and potentials is therefore analogous to the expression for the 
field of a point charge discovered by Heaviside and Feynman. 

1. Introduction 
Despite the fact that there exist in nature many objects which have magnetic or electric 

dipole moments it is customary when considering electromagnetic radiation to focus 
attention on the effects of accelerated point charges. The reason for this, of course, is that 
the most common source of radiation is the electron which, though it possesses a magnetic 
moment, can be considered a point charge with little error except for radiation of such high 
frequency that quantum effects become important. The few cases that arise where a more 
elaborate treatment is necessary are essentially examples of currents in a fixed region of space 
changing with time. These cases can be considered as simple generalizations of the formulae 
for the point charge, and therefore give no information about the radiation from dipoles 
moving in an arbitrary manner. This latter problem becomes of special importance in 
astrophysics where moving magnetic stars, for example, may give rise to considerable 
radiation. 

Our concern here, however, will not be with the detailed application of the theory but 
with the derivation of expressions for the potentials and fields of moving dipoles. In  recent 
years Ward (1964, 1965) and Ellis (1963, 1966) have examined the fields due to accelerated 
dipoles, and Ellis, in particular, has obtained expressions for the radiation field. The final 
results we shall present are, therefore, for the most part not new. However, the methods 
employed by V7ard (1964, 1965) and Ellis (1963) are rather complicated; for example, 
Ellis follows the world lines of single poles which are finally compounded to yield the 
dipole, while Ward employs a special method of integrating Maxwell’s equations. Both 
methods lead to complex expressions devoid of a simple physical interpretation. In  his 
most recent work Ellis (1966) uses an invariant form throughout, reaching a succinct 
formulation of the fields in a concise manner related to that to be described here. However, 
when the succinct form is unfolded for application Ellis recovers the complicated expression 
he derived earlier. For this reason the work presented here may be of interest since we shall 
derive the results easily using well-known methods. In  addition we shall show how the 
potentials for an accelerated particle with a pure magnetic dipole in its rest frame can be 
written analogously to the beautiful expression for the fields of a point charge first dis- 
covered by Heaviside (1902) and rediscovered by Feynman (1950). 

2. The point charge 
T o  place our results in perspective we first derive the fields of the point charge in the 

Heaviside-Feynman form. Let the charge of the particle be e, its velocity v and R the 
vector from the observer at x to the field point x’. If the position of the particle is given by 
r(t) then the current four-vector is 

where p, = (1, p) and p = vjc. The potential four-vector is then 

J,  = ecP,18{x’ - r(t)) (2.1) 

r(t’)) dt’ d3x‘ (2 .4 
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the retarded behaviour being provided by 6(t'+ R/c-t) .  The volume integral in (2.2) can 
be done immediately, resulting in 

A, = , S g a ( t ' + ;  R - t )  dt'. 

If desired the integration over t' could also be performed, giving the classical Lienard 
Wiechert potentials. However, the determination of the fields is easier if the integral form 
is retained. We now calculate E from 

1 aA E =  ----v@ 
c at 

by differentiating under the integral sign in (2.3), noting that ;/at operates only on 6 and v 
operates only on R. We find 

Here n is a unit vector in the direction R and ret denotes that the bracketed quantity is to be 
evaluated at the retarded time t' = t - R/c. The factor K is defined by 

According to this definition 
1 dR 

- I--- 1 
K c dt 
_ -  

an expression we shall use frequently. Substituting for l j K  in (2.5) and using the fact that 

I d  
c dt' p =  ---(' n) 

(2.5) becomes 

This is the Heaviside-Feynman formula. To calculate B we proceed as before using 
B = V A A. We find 

B = (-+--(-)I p A n  d p A n  . 
KR2 dt KcR ret 

(2.10) 

But 
R d n  

K c dt 
A n  -- --- - P A n  

so (2.10) becomes 

(2.11) 
d n  1 

B=e-A-+-nA-- 
(;c dt c2 i:r)r.,, 

or B = n A E, as expected. 
Apart from the simplicity of (2.9) it is especially useful because each term may be given a 

physical interpretation. Thus the first term gives the retarded static field while the second 
term gives the first-order correction for the retardation. The direct static field is therefore a 
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better approximation to the field of a moving charge than one would at first suppose. The 
third term contains all the radiation effects and provides the simplest starting point for a 
determination of the frequency spectra of the radiation. A very nice discussion of the 
interpretation of (2.9) is given by Feynman in the reference cited. 

3. The dipole potentials 
T o  obtain the fields of a moving dipole we can proceed as before. T o  establish the form 

of the current four-vector it is convenient to consider the dipole as having a polarization 
density P(t’) and a magnetization density M(t’) as seen in the observer’s frame. The observer 
will then see a charge and current density 

p = - V . P  (3.1) 

which follow from standard results in electromagnetic theory (Jackson 1962, p. 198). The 
current four-vector ( cp ,  J) is thus 

(3.3) 

Although it is not necessary for what follows, it is useful to note that (3.3) can be written in a 
covariant way by defining a skew symmetric tensor PPy such that 

where ‘7, is the gradient four-vector ((l/c)a/at‘, -0) and Pz, = -Me, Pgd = - !Mz, 
PZt = -Pz, Put = -Pu, etc. 

It is important to realize that P and M are densities, and the appropriate tensor expres- 
sions for the electromagnetic dipole moment tensor is PPv dv, where do, is an element of 
proper volume. If one integrates over the volume in the observer’s frame then a factor of 
1/( 1 - v2/c2) is introduced. 

Having found J and p we can proceed as before, except we find it convenient here to split 
A, into its components (Q,, A). Thus 

dt’ d3x’ 
l a p  

A = 11 (;%+ v A M 

Q, = - / /TS(t’+7-t)  V . P  R dt‘d3x‘. 

For the point dipole we have 
P = pS(x‘- r(t’)) 

M = pS{x’-r(t’)}. 

(3.4) 

(3.5) 

(3.6) 

The  vector potential can be evaluated in the following way. The first term can be integrated 
by parts and the second simplified using the result 

Thus 

where 6‘ denotes a derivative of the delta function with respect to its argument. If we perform 
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the final integration in (3.8), we obtain 

Proceeding in a similar way, we find for CD the expression 

(3 .9)  

(3.10) 

If one requires the electric and magnetic fields, (3.9) and (3.10) are not the best to work with 
since differentiations are best carried out before the integrals are evaluated. However, they 
can be written in an interesting way by using the expression (2.7) for 1 / K .  Substituting for 
1 j K  and rearranging terms we find 

( )+-(---- dt  K R c  Rc2 d t  ret 

p A n  R d p A n  d p A = -+-- ___ ( R2 c dt R 

Similarly, one finds for CD the expression 

(3.11) 

(3.12) 

If the moment is a pure magnetic dipole in the rest frame of the particle one finds by using 
the transformation rules for p and p that p = p A p. Substituting this result in (3.11) we 
find on using (2.8) - .  . 

ret 
(3.13) 

with a similar, but not quite so compact expression for <D. This expression is almost exactly 
the same as (2.9) and may be interpreted similarly except for the last term which is not the 
sole contributor to the radiation. The  reader may find it useful to compare (3.13) with the 
result due to Ellis (1963, p. 765). 

4. The d i p o l e  f i e lds  
T o  obtain E we return to the integral expressions for A and CD and use the relation 

The  calculation is straightforward and we find 

3 ( p . n ) n - p  d 3 ( p . n ) n - p  
{ KR3 +dt( K R 2 c  

-vCD= 
Therefore 

3 ( p . n ) n - p  d 3 ( p . n ) n - p  d p A n  +- _-__ -_ -- 
d d  K R 2 c  1 d t ( K R 2 c )  

E =  [ 
KR3 

d2  n A ( n A p ) - p A n  
+ dt2 -( K R c 2  
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T o  cast this in a form similar to (2.9) we substitute for K. We find 
.n)n-p R d 3(p.n)n-p -1 E =  

c dt( R3 
d 3(p.n)n-p dR p A n  1 d2 nA(nAp) -pAn -_--- +- 
dt( c2R2 dt KcR2) c2 dt2i KR ret 

Here, as before, the first two terms represent the ‘corrected’ retarded static field. The last 
term contains all the radiation effects and is therefore analogous to the (l/c2) d2n/dt2 term in 
(2.9). The third term is an enigma and despite considerable effort no satisfactory physical 
interpretation of it has been found. It can, however, be simplified in the special case where 
p. = 0 in the rest frame of the particle. For this case p = p A p and the term becomes 

- ‘ i (p .nR%(G)) .  c2 dt 

By making use of the fact that B = Y7 A A we can easily obtain a similar expression for B. 
Omitting the details, which are similar to those involved in calculating E, we find 

3(p.n)n-p. R d 3(p..n)n-p.j 
B = [  R3 +--[ c dt R3 

d 3(p.n)n-p.dR pAn 1 d2 nA(nAp.)+pAn 
f--- -dr( c2R2 dt KR2d c2 d t 2 j  KR 

Reference to (4.2) shows the symmetry between the expressions. One may easily show from 
(4.2) and (4.3) that the radiation fields satisfy B = n A E since n is effectively constant at 
large distances. Again the third term is difficult to interpret, but it can be simplified if 
p = 0 in the rest frame. We find it becomes 

Finally, we note that in the particular case where p. = 0 in the rest frame of the particle we 
can write the radiation term in E as 

1 d2 
- Rc2 -[n dt2 A (n A ( p + y p ) ) ] .  (4.4) 

This is the same expression as that obtained by Ward (1964). 

5. Radiated power 
As we noted earlier, Ellis has obtained the expressions for the radiated power using his 

form of the radiation fields. Here we give an example to show how the power can be 
calculated quickly using our representation of E. We suppose p = 0 in the rest frame of the 
particle and assume in addition that the dipole does not rotate or oscillate but moves in a 
circular orbit with p parallel to p. We choose a spherical polar coordinate system with p in 
the direction 0 = 0, B the angle between n and p, and 4 the angle between the plane 
containing (n, p) and that containing (p, dpldt’). Here the radiation field is 

After differentiation we find 

nA [,A 
1 E=--- 

Rc2K4 

where dots denote derivatives with respect to t’. 
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For this case 

where y (equal to 1/2/(1- v2/c2)) provides the relativistic contraction but is itself unchanged 
by the motion. Substituting in (5.2) we find 

3 sin20 cos2+ 3 sin 0 cos + 
n A (n A i))  

K P E =  (n A (n A k)( yRc2K4 

where R = P/p and i = (dP/dt’)//P/’. 
In  terms of the particle’s own time the power radiated per unit solid angle is 

d P  cK 
__ - -- lEl2R2. 
d f i  457- 

On subsituting for E we finally obtain 

d P  P4pO2 sin20 _ -  - 
d f i  4iry2c3K9P4 

3Kp sin ”34 . [ (3 cos2+(P2 - 1 + K )  - K}2 + ( 
This is Ellis’s result. If p is perpendicular to P the use of (4.4) shows that the power is a 
multiple of the foregoing expression. 

If the power spectrum is needed then the electric field as presented in (4.2) is particu- 
larly easy to use since the second derivative allows two immediate integrations by parts. 
The  reader will be able to work out the details readily. 

6. Conclusion 
We have been able to derive comparatively simple vector expressions for the potentials 

and fields of a dipole moving in any manner. The resultant expression for the vector 
potential consists of terms which represent successively the retarded static potential, a 
first-order ‘correction’ to this potential and a third term arising from the acceleration. In  
this form the potential is equivalent to the expression for the electric field for a moving point 
charge discovered by Heaviside and Feynman. The electric and magnetic fields are similar 
in form except for an additional term not associated with radiation. The  radiation term, 
as in the case of the point charge, can be represented as a second derivative and is therefore 
particularly useful for power spectra calculations. 
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